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ABSTRACT

This thesis presents a desigen for a system
initialization mechanism for a multiple processor system.
The design 1s based wupon a syster of microprocessors
(specifically the Intel 8966) being used with a set of
application processes, as 1is common in many real-time
processing applications. The desigr 1is based upor the
concepts of explicit communicating processes and explicit
memory Sesmentation- although {t does not require full
hardvware segmentation.

Wwith the gocal of simplifyine the system initialization
function, this thesis segregates the required initislization
actions into three disticct phases. The specific phase for
each .action 1is determined by which phase provides the most
supportive environment for that particular action.

While the initializatior mechanism descridbed in this
thesis was developed for a particular real-time applicatioun,
the desipgn concepts described are applicadle to a variety of

hardware and operating system configuraticns.
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I. INTRODUCTION

A. OBJECTIVES

System 1initialization is the method used to get an

operatineg system loaded and running on a computer system. i

This 1is a recurrirg requirement that must be acccmplished
each time the computer is powered up and each time the wuser
wishes to change from one ocoreratinrg system to another. This
thesis presents a versatile, simple to understand, and
widely applicable system initialization mechanism based on a
careful sequencing of the initialization activities. These
activities will be performed in one of the three system
initialization phases addressed {n this thesis based upon
which phase provides the most supportive eanvironment for

each particular activity.

Traditionally, operating system designers have ignored
the system initialization problem until the final
development stages. As a result, most existing system
initialization schemes are rather ad-hoc, using & mass of

"special case” activities to accomplish initialization. This

thesis addresses these protlems by providing a framework for
a simple system initialization process that can be used with
a varlety of hardware and operating system configurations.
The approach 1in this thesis 1is to make the system

initialization mechanism appear as much 1like a normal
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applications program as possible, and thus use the operating
system services to the fvllcst extent. This approach is made
pos<itle by two operating system concepts that are ‘teing
used in many current operating systems on large mairnframe
ard minicomputers, but have only recently been introduced in
the microprocessor arena., The first 1s the concept of
segmented memory. The second is the concept of asynchronous
processes, includine an "idle process” so that the system
always "comes to rest  in a state that is easily created and
controlled. These two ccncepts permit the initialization
mechanism to avoid the special cases and ad-hoc rethods used

irn so many existing mechanisms.

B. MOTIVA™ICN

For several years, the So0lid State 1labdboratory at the
Naval Pnsteraduate School has been conducting research in
the image processing area. A4 relatively recent area of
research thas been in the development of "smart semsors for
missile guidance, radar, survelllance, and other image
processing applications ([1l. Current sensor platforms relay
massive amounts of raw data to ground-bdased processing
centers., The smart sensor will provide on-board processing
0f collected data such that only the initial processed irage
and periodic updates ne=d bYe downlinked to the surface.
Clearly, a smart sensor will require on-bdoard electronics to

do the data processing.
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Several Naval Postgraduate Schocl theses, under the
supervision of Professor 7. ¥, Tao, have contridbuted to the
development of the smart sensor. In 1977, Yehoshua [2] and
Svenor [3] developed filter designs to improve infrared
backeround clutter suppression. In 1978, Hilmers [4] began
processing real-world infrared images. A4All the early
computer processing was done on an IBM-36¢ computer system.
In 1979, Celik [5] developed a sSimulation program on a
Dizital Zauipment Corporation (DEC) LSI~11 microcomputer in
an attempt to marry current hardware and software research
efforts. Due to 1ts 1limited primary memory and slow
processing speed, however, the LSI-11 proved inadequete for
anything dut simulation and experimentation. This spawned
additional research in the area of microprocessors aad
micrecomputer architecture. In 1late 1979, Erenner [6]
presented a multiple microprocessor system design, wusing
commercially available, off-the-shelf components, that could
process the algorithms developed 1in earlier research and
also provide real-time, or near real-time, system response,

Eefore that goal could te reached, however, an cperating
system was required to control the operation of the computer
system. This operating system would provide ar 1interface
between the computer hardware and the user. The operating
system concepts used were based on the Multics operating
system ([13,17]. The Yasic microcomputer operating system

design was developed bty O’Connell and Richardson [18]). W. ..

12




Wasson [?] refined and implemented the basic core, or
kernel, of the operating system. The system initialization
design presented ir this thesis was developed concurrently

with the kernel of the operating system.

C. TERMS EXPLAINED
In order to facilitate the discussion of system
initializtion, a few terms should bve clearly understood.

1. Operating System

The operatine system is trat set of program modules
withir a computer system that govern the utilization of
computer resources [€]. These resources can be grouped into
four major categories: processors, memory, external
Input/Output (I/0) devices, and the secondary storase that
conteins the programs and data.

2. Process

This thesis will refer to the word "process  as the
internal representation of a computational task. ZEach
process can be uniquely characterized %y its execution point
(viz., the state of 1its processor registers), and 1its
address space (viz., the memory accessidle to that process).
Since only one process can be running on a physical
processor at a time, the operating system will multiplexr a
number of processes onto each processor. While one'process
is runnine, the other processes will be waiting their turas

to bYe scheduled and run. But, when viewed in the long term,

13




each process can be seen as proceeding through its execution

[9]. This i{s consistent with Saltzer’s defirition of a
process as a program in execution on a pseudo-processor
{1e].

3. Hardware Configuration

The hardware configuration is defined as that set of
hardware components, or modules, present in the system. TFor

example, processors and memery mcdules are parts of the

hardware configuration.

4, Software Corfiguration

The software configuration 1is made up of the
processes, system tables, and system oparameters. For
example, the numter of processes allowed in the system at a
time would be considered a part of the software
configuration.

5. System Configuration

. The system configuration will e the combination of
the hardware configuration and the software configuratiorn.

6. Application

An application 1is defined as a proeram that cauvses

the computer system to perrorm some useful work.

?. Virtual Environment

machine environrment. Briefly, virtualizetion results in a

hierarchy of levels of abstraction, each duilding wupon the

P A key concept in this thesis is that of the virtual
|
]

facilities provided by the previous level. If the computer

14




hardware is considered as the lowest level, then the traffic
controller, or processor scheduler, could te the next hirher
level and the applicatiors prcgrams could bYe the highest
level, Thus each 1level of abstraction runs on the virtual
machine provided by the lower levels of abstraction, angd
each level Ddecomes a part of the virtual mackine seen dy
higher levels,
8, Core Imaze

A core 1{imapge will Dde described as an exarst
representation of a sequence of instructions and txheir
assoclated data structures exactly as they would appear in
primary memory Jjust prior to execution, but residinz on some
secondary storage medium. This term 1is scmewkhat of an
anachronism, since core memory has been replaced ty
semiconductor memory in most modern computer systems, dut it
1s descriptive of the concept, and will te used extensively
throughout this thesis.

9. System Initialization Phases

In one of the few pudlications dealing with system
initialization, Luniewski {11] views the svstem
initialization functions with respect to three phases, or

time periods. This thesis follows that same approach.
a. System Generation Time
The ©bYootload medium (viz., a core image of the
operating system) is created at system eeneratiorn time. This

normally occurs during a previous session of system

15




operation, or s done on a seperate development comrputer
system.
b. Bootload Time
Bootload time is when the lowest level 02 the
operatine system is actually loaded into the primary memory
and its system parameters and tables {nitialized.
c. Run Time
The period followinz tYtootload time, when the
operatine system prosrams are runcing normally. is called
run time.

1¢. Multiprograrming

This term descrides a system in which two or mere
processes can de in one of several "states of execution” at
one time. A process 1s in a state of execution 1if it has
been started but has not yet been completed or termirated ty
an error condition [8]. In thais thesis, a process is said to
be “running” if it is assigned a physical procecsor and its
instructions are being executed. A process is ready {if it
could run, dut 1is mnot currently assigned a rhysical
processor. A process is "blocked” if it is waiting for some
event to occur (e.g., an 1/0 operation to complete cr the
completion of some action by another process).

11. Multiprocessineg

This term implies that more thar one processing

unit is present in the hardware configuration.
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Multiprocessing is used to achieve greater processing power,
reliadbility, and economlies of scale.

12, T™ie Bootload Program

A bYootload program is a simple program writtenm to
run on bare hardware. The bootload proegram s typically
stored in read-only memory (ROM), although 1t may be
extended by a "bootstrap’ proeram read in from a fixed
location 1in secondary storage. It 1s used to read the core
{mage of the base layer of the operating systiem from
secondary storage, load it into the computer’s prirmary
memory, and get the operating svstem runnineg.

13. The Loader Process

The loader process is nne of the modules that are
loaded in with the base layer of the operatine systerm. It is
similar in function to the bootload program, but it is used
to load the higher layers of the operating syster and the
application programs, The primary difference is that thte
loader process is used at run time, ard maxes use of the
operating system functions and services provided ty the bdase

layer,

D. GENERAL DISCUSSION

In general, the odjective of svstem initializatlon is to
get the operating system loaded into primary mermory and
running so that 1t can provide the support facilities

necessary to run applications programs. This procedure is

17




carried out in three dasic steps that correspond to the
three system initialization phases atove. First of all, the
bootload progzram and the core image of the operating sysyem
are developed., This phase occurs prior to, and somewhat
independent of, the next two steps.

The dootload program is execvted in phase two of system
initialization. Its purpose is to read the tase layer of the
operating system from scre secondary storage relium (e.z.,
magnetic tape or disc) and to load trhe data thet it reads
into primary memory. The primary memory addresses are either
determired by the 1loader or are enccded in the data. The
secondary storaze medium will cointain the operatine system
code and data structures. This second phase also involves
some preprocessing of the core image data in order that the
loader may 1initialize the oprocessor registers and some
operating system data structures in preperation for running
the operating system programs., For example, the core image,
as it exists on secondary storage, contains 1load addresses
and some key processor register values. The bootload rroeram
must strip off this information and use it to initialize the
registers and data structures as mentioned adeve. The
details of the bootload program will be discussed further {n
Chapter III,

The 1last phase of 1initialization occurs when the

bootload progzam passes control tc¢ the first executatle
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statement in the operatine system code. At this point, the

operating system will begin its normal execution.

It 1s a ©basic premise of this thesis that actions
performed during system geperation time or run time are
inherently simpler than the same action performed during the
bootload phase. Therefore, this thesis takes the positicn
that the entire system initializatioa process can bte greatly
simplified 1{f the core image prcduced in system generatiocn
is as complete as possitle, theredy reducing the arount of
processing required at bdootload time. The justification for
this line of reasoning should become clear in the <following
chapter. ‘

With the layered approach to system generation provided
by the virtual environment concent, the most difficuvlt task
faced in system 1initialization 4is the tootloading of the
base level of the operatine system. Once this has Deen
accomplished, the initialization process can take advantagze
of the services provided by this tase layer to c&rry out the
remainder of {ts activities. As subsequernt 1layers are
initialized, more and more services become availatle and the
virtual machine seen by the system initialization process

becomes increasingly powerful.

E. HIGE LEVEL LANGUAGE PROGRAMMING
Since simplicity and gereral applicadility are twe goals

of this thesis, the design descrited herein 1is oriented

19
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almost totally towards a high level programmirg language

(PL/M). The motivation for this decision came from several
sources. Nelson ([12] reported a three-to-one increase in
productivity when a high level language was used inctead of
assembly language. While the standard deviations ke rerported
were large, the evidence was overwhelmingly in favor of high
level languamzes. Corbato, Saltzer, and Clingen [12]
attridbute much of the success of the Multics developrmeat te¢
the wuse of a high level programming language (PL/1) and the
interactive debuggine that Multics provided. ZErooks ([14)
agrees that the 1increases in oproductivity ard dedugzing
speed are overwhelming reasons to use a high level 1language
in the design and implementation of systems programs. 4 high
level 1language will also serve as a communication tool for
anyone who reads the program listing. The loegical structure
of the prorram can te reflected in the listing, and comments
may bdYe 1inserted at will to clarify potentially confusine

portions of the program.

F. STRUCTURE OF THE TFESIS

With this chapter as an introduction, Chapter II will
present an overview of the environment in which this desien
was developed and implemnted. This overview will incude the
hardware used in the project and a bdrief 1look at the
philosophy used in the development of the cperating system.

Chapter III presents the deteiled design and proposed

20




implementation. Chapter IV presents the conclusions reached
during the design of this system initialization mechanism,
and some recommendations for future research that might use

this design as a bdase. '

G. SUMMARY

This chapter has provided the reader with the odbjectives
that this thests hopes to accomplish, and with the
motivation behind the thesis project. It has intrcduced the
reader to system initialization by defining some cof the
terms used in the thesis, and by presenting a drief genersl
discussion of the initialization function. This chapter has
also explained the motivation ©behind the almost-exclusive
use of high—-level language programming in the development of

the programs for this thesis.
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II. THE DEVELOPMENT ENVIRONMENT

A. OBJECTIVE

This chapter will provide a detailed description of the
environment in which the system initialization mechanism was
developed. It will include an explanaticn of the hardware
used to develop the design for the mecharism, some tasic
concepts from the operating system it {s desigred to
initialize, and some of the assumptions made about the
multiple microcomputer system andi the Smart sensor

algorithms that the system is designed to run.

B. HARDWARE

As discussed in the Dbackeround section of Chapter I,
when it was determined that the single LSI-11 microcomputer
would handle the processinz requirements fer a srért sensor
system, dut would not achieve the desired speeds, the search
for a replacement processor suitabdle for use in a
multiple-processor computer system tegan. The decision was
made to focus the search on currently available commercial
hardware, since several other reseach activities were
explorineg the wuse of specialized hrardware for image
processing applications. Clock speed, memory size, the
number of address and data bdits, the bdus structure,

docurentation, and availadility were among the oprimary
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selection criteria considered. The search iritially
identified the DEC LSI-11/23, the Intel P86, the Motorola
6ee¢¢, and the Zilog Z8¢¢C as candidates.

The decision to use the Intel 8086 was finally maide,
based upon its performance specifications, past experience
with other 1Intel products, and the fact that it was
commerclally packaged for multiprocessor applications. The
fact that it was availadle off-the-shelf arnd supported with
a full product 1lirne of support software and peripheral
equipment also had an impact on the selection.

The 1Intel E0ES6 is a 16-bit, EMOS technology
microprocessor. It has a clock rate of 5 Megahertz (MEz). 3By
combinine a base address with an offset, it can directly
access a full Megabdbyte of primary memory. It is capadle of
both B8-b%it and 16-bit sizsned or wunsigned arithmetic in
binary or decimal bases, including multiply and divide [15].
It achieves its relatively high speed throvegh & combination
of tts EMOS technology and some architectural advancements.
A major factor in its architecture 1s the overlapping of
instruction fetch ard instruction execution. An imnstruction
stream bdbyte queue provides for pre-fetching up to six bdytes
of 1instruction during the execution of previously fetched
instructions. The exact numter of instructiors prefetched is
a function of the instructions bveing fetched, since they

vary in length.
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The processor has direct access to four segments at any
one time [15}. Their base addresses, or starting 1locations
are contained in four segment registers. The Code Segment
(CS) register points to the tase of the code segment, from
which 1instuctions are fetched. The value contained ia the
Instruction Pointer (IP) register gives the offset, from the
CS value, to the next instruction to be executed. The Stack
Segment (SS) register is a pointer to the base of the starck
segment. Stack operations are performed on the locations in
this seement. The Data Segment (DS) register points to the
current data segment, that 1is used to maintain program
variables. There s also available an Extra Segment (ES)
register, that may point to an additicnal segment used for
data storage,

Another major factor in the selection of the Intel 2286
was the availability of the Iatel ISEC E€6/12&4 sirgle board
B computer, The 86/12A is a complete microccemputer system on
one 6.75 ty 12.2 inch printed circuit beard., The versiern of
the £86/12A wused in this design contains a EEHz EQEE
processor, 32K dytes of random-access memory (RAM), 8K tytes
of electrically prosgammable read-only remory (TPROM),
programmable serial and parallel I1/0 1interfaces, a
programmable interrupt controller, & real-time clock, and an
interface to the Intel Multibus for interconnection to other
devices [15]. At the hardware level, the 32K btyvtes of RAM i<

dual-ported. That 1is, the RAM on one board in a
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multi-computer system is availadle to all the other
processors in that system. The on-board RAM of each €6/124
is actually seen as two address spaces in a multi-computer
configuration, Bowever the operating system desigr does not
support, nor can it tolerate, a segment havirg two
addresses. The dual port feature 1is wused during system
initialization, but this is a temporary measure, being used
\until a suitadble bootload program is available in the EPPROM,
The processor on the same bdoard sees its local memory as the
address space detween 2020CH and 22¢Z¢H. The other toardes ir
the system see that same RAM as a different address space;
the exact address range depends on the board on which it
resides ard the strapping options employed in the hardware.
Figure I11-3 shows a system diagram of the iSBC £€6/12A single
board computer,

The hardware coenfiguration of the multiple
microprocessor system used in this thesis project 1s shown
in fieure 1II-4. It 1is housed in an Iatel ICS-8€ chassis,
which provides the power supplies, <cooling fans, and the
Multibus «connections. System components 1include a Mu-Pro
128K byte error detecting/error correcting XAM bdoard ard up
to six 1SBC 86/12A"s. Near-term hardware enhancements
include a Multibus interface to a hard disc system for
on-line secondary storage, and an image display device Tor

smart sensor software development.
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Program development was done on an Intel INTETLLEC-II
microcomputer development system (4DS). Since no secondary
storage was avalladle on the multiple microcomputer systerm,
the MDS system was used to simulate secoandary storage for
the 86/12A°s. A program written for the MDS prevides
communication to onre of the multiple microcomputers via &
serial-port-to-serial-port connectior. The Ybootload prozram
and the operating system loader view the port just as if it
were the interface to a secondary storage device.

As shown in figure II-4¢, the two computer systems are
also connected by an Intel ICE-86 in-circult emulator [16].
The ICE-86 is used to aid in proeram development. Ir this
application, it is also used to load into the E€/12A°s those
programs that will eventually reside in EPEOM. Since the
86/124"s do not have direct access to secondary storage via
the system btus, the run-time loader process that runs on the
processor connected to the MDS via the serial port link‘must
perform the disc I/0 function and make the disc data
avallabdle to the other lcader processors. ¥hen the hard disc
is installed, all the run-time 1lcader processes will be
identical., Until that time, the method{described above and
detatled in the next chapter will bYe used for system

initialization.
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C. OPERATING SYSTEM BASICS

The operating system developed for the microcomputer
system descrided above was written by W. J. Wasson (7] in a
thesis projJect that was done concurrently with this thesis.
It uses many of the concepts developed for the Multics
system [17), and is an extension, witk a few chranges, of the
distriduted operating system concepts presented by 0“Connell
and PRichardson [18]. The operatine system is intended to
provide an interface between the user and the hardware such
that the underlying hardware configuration 1is made
invisidle, or at least of no direct concern, to the wuser,
This section of the thesis 1is 1intended ac< & ‘tasic
intoduction to those operating system concepts and
mechanisms that directly affect system initializatior. The
reader is referred to the thesis Yy Wasson [7] for
additional details.

1. Processor Multiplexine

This operating system makes use of the virtual
environment concept introduced in chapter one. This concept
provides a layered operating system consisting of several
levels. At the lowest level is the Inner Traffic Controller,
whose function is to multiplex Saltzer’s  “pseudo-
processors ([18] onto the physical processors present it the
system. The primary data base used by the Inner Traffic
Controller is the Virtual Frocessor Map. A virtual processor

i1s defined as a "simulation” of & processor using a physical
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processor to interpret the instructions executed” by tre
simuilated processor, This data structure containe the
virtual processor execution state, its scheduling priority,
interprocess communication information, a descriptor for its
address space (represented by the 1location of its stack
segment), and a scheduling flag that signifies that the
processor has been sent a virtual preempt interrupt by some
other virtual processor.

At the next level 1s the Traffic Corntroller. The Traffic
Controller serves. to multiplex processes cnto these
pseudo-processors. The data structure used by the Traffic
Controller is called the Active Process Table. This tadle
contains the information needed to get a process loacded onto
4 virtual processor and runnine.

Wasson also provides a "Gate module at the next level
to simplify the user’s interface to the operating system
functions Yy providing a single entry peoint teo the lcwer
levels of the operating system. The programmer 1interfaces
with all operating system functions by makinz a "call” to
the gate module using tke parameters for the requested
function as arguments in the call.

2. The Process Parameter Block

In addition to 1loadinz the processes into mremory,
system initialization must also identify these proresses to
the operating system so that they carn bte scheduled and run.

The initialization mechanism descrided in this thesis uses a
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Process Parameter Elock to pass process defirition
parameters to the process creation function of the operaticg
system. The Process Parameter Block is a per-processor
artifice into which each run-time 1loader —ctrocess stores
definition parameters for the process being loaded, When the
operating system 1is ready to create [7] the process, it
extracts the parameters fron the Process Parameter Block.
Since processes are loaded and created one at a time, the
memory locations in the parameter block can bde reused for
each process. As seen in figure II-5, the Process Parameter
Block <contains values for all the rprocessor registers
associated with a process. Only the CS, IP, and SS register ;

values are of concern in this thesis, but the structure was

designed to provide easy expansion during later research.

v e

The Priority is wused by the <scheduling algorithm. The

Affinity is wused to bind a process to a particular
processor.

3. Interprocess Communication

Of primarvy importance tc ary multiprogramming or

multiprocessing system 1is 1irnter-process communicatior to

synchronize cooperating processes and control access te

shared resources. This operating system uses the

"Eventcounts and Sequencers” mechanism proposed Yy Xanodia
and Reed [19). A summary of this mechanism is provided here,
since {interprocess communization s vital to the run-time

loader processes.
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An eventcount is a system variadle that represents a
class of events that will ozcur in the system. A virtual
processor c¢an perform three primitive operations on
eventcounts. It may obtain the <current value of an
eventcount by performing a READ of that eventcount. It can
increment by one the curreant value of an eventcourt dy doing
an ITC_ADVANCE on that eventcount. Finally, a virtual
processor may await the occurrernce of & particular event
within the class of events associated with an eventcount by
doing an ITC_AWAIT on that eventcount. This mechanism can be
simply viewed as using a counter to control the «virtuel
processors. However it offers an advantage over the
traditional semaphore or mechanism. The c¢ccurence of an
event can Ye droadcast to several virtual processors who
might be awaiting i{t. This is more difficult to achieve with

more traditiomal interpreocess communication schemes.

D. DEVELOPMENT TOOLS

As mentioned earlier, all proegram development was done
on a seperate development computer <cystem. One major
advantage of wusing such a system {5 the supportive
environment it provides the programmer. This support is in
the form of the software development utilities a&availadle
from the manufacturer of the developmeat system. In the
development of the system initialization programs for this

thesis, the decision was made to take full advantage of
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these utility programs. In addition to the PI/M-€6 corpller,
three other utility programs, provided by Intel, are used
extensively during trhe system generation phase to create the
core image of the operating system to bde loaded during the
bootload phase. These three Intel progrars are called
LINK86, L10C&6, and OE&6 (22]. They are used to perform the
functions of linking, locating, and object file
transformation. ZEach of these functions is discussed delow,
Appendix A contains annotated sample outputs from the
development utility programs described in this section.

1. Compiling Program Modules

The PL/M-£6 compiler [21], in additiorn to
translatirg the high-level language statements into E¢ES
machine instructions, £fers four mode options. Thece
options 1let the programmer deter;ine the degree of
segmentation to bte uced. The SMALL option tells the compiler
to produce only two segments. One Segmert comdires the code
sections of all the modules in the program (or prograr
section). The other segment contains all the constant and
variable data and the stack. This mode provides the greatest
run-time efficiency, since the Code Segment register and the
Data Segment register (which in this mode is identical to
the Stack Segment register) do not change during run-time.
The trade—-off is that the total size of each of these
segments may not exceed 64k bdytes, and that there is very

little memory allocation flexibility.
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At the other extreme is the LARGE compile mode. In
this mode, the <code section of each module is allocated a
separate segment. The same is true for the data section cf
each module. The stack sections nf all modules are comdined
to form a single stack segment. This mode pairs up the code
and data segments of each module and insures that the CS anéd ]
DS registers always contain the values from the same mcdule.

In this mode, the total amount cf code and data may exceed

64k bytes, but any one segment is constrained to £4Xk.

The COMPACT and MEDIUM modes fall in tetween the two
modes discussed, and offer differirg degrees of segment
seperation. The PL/M=-86 Compiler Operator’s Manual (21]
states that all modules in a program must bte compiled in the
same mode. To maintain flexidility and to achieve the finest
grapularity of segment control, the LARGE mode 1is wvsed on
all operating system and application program modules run on

) the computer system used for this thesis project.

2. Combining Proeram Modules

LINK86 is a program used to combine the separately
developed and compiled oprogram modules into a relocatzble
object module. When these separate modules were compilegd,

all addresses were relative to the Yeginning of each madule.

LINKE6 accepts these separate modules as irput, ard precduces
as output a single combined module whose addressec are
relative to the beginning of the linked output module. In so

doing, it resolves all intermodule references to variadles
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and procedures, The availabdility of the linker permits the
programmer to develop small, managable program rodules that
can be debugged and maintained separately, ard then bound
into a single module prior to loading.

¢/
3. Assigning Memory Locations

The LOC86 program takes as input the relocatabdle
object module from the linker and produces as output an
absolute object module in which all addresses have ‘teern
converted to physical memory locations. It alsc produces a
memory map which reflects the binding performed and a symbtol
table that shows the memory location assigred to each
variadble, 1ladvel, ard procedure. LOCE6 also allows the user
to specify exactly where in memory he wants the various
modules of hWis program to te located.

4, Obtject to Hexadecimal File Coaversion

The output of the locator is an atsclute odbject file
of the 1input. This object file, as it exists on secorndary
storage, is a sequernce of btimary digits. Encoeded 1in this
sequence of dbinary digits are all the machine instructiors
and data necessary to run the process. Before executlon can
actually take place, however, certain key processor
registers (viz., the code segment, instruction pointer, and
stack segment registers) must be initialized tc their proper
values. This is one o0f the responsidilities of the
initialization mechanism. These values are contained in the

binary odject file. For the equipment used in this thesis,
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the exact format of the data in these object files was not

presented in any documentation available from the
manufacturer. 3efore the initialization mechanism can
perform arny programmed action on the object files, it must
have, or be atle to ascertain, the {ile format. Fcrtunately,
there is a file conversion program, called OFE6, which
converts this %binary obtject file to the hexadecimal ASCII
format., This program, and thre output file it produces, is
well documented. In an effort to expedite developrent of the
initialization mechanism, it was decided to use the OEES
program and convert the object files to ASCII, so that they
could more easily manipulated.

There 1is, however, a <ctorage space trade-off to
consider. For example, the eilzht-bit ‘tinary valuve, (1¢7
1111, is read as 4F in hexadecimal. To enceode this in ASCII,
one byte 1is required for the ASCII representatior of the
4(ge11l ¢1¢2), and ore byte is required for the F(£12¢ ¢112).
This representation scheme requires twice as much storage in
the MDS as the ‘%inary form, Dbdut tecause of lirited
docurentation it makes the development of the iritializatior
mechanism much simpler. The bootstrap prograrm and the loader
process in this thesis <contain a simple preccedure whizh
converts this ASCII representation tack to  DYinary tefore

storineg the data, so there 1is no waste of memory in the

multiple microcomputer system.




E. ASSUMPTIONS

In an effort to expedite work cn the algorithms for the
smart sensor, several assumpticns were made which would
simplify the design cof the initialization mecharism and the
operating system. This simplification primary icvolves the
allocaticn and partial completisn of some operatice system
tables used at run time. These tables are used to describde
to the operating system the set of processes that will te
running, and the hrardware configuratior that it will %e
runcing on. In a general-user computer system, sore of these
assumptions might not dYe valid, Future systems programs
developed for the multiple microcomputer system may wish to
generalize the system initialization mechanism to eliricate
some of these assumptions.

The key assumption made is that the run—time environmert
is wvery static. That is, the set of procecsses to %e rum and
the hardware configuration is xnown at system generation
time, and remains constart during run time. This assumption
is justified by the fact that the alegorithms to do the
processing experiments for the smart sensor system can bdbe
partitioned into processes before the actual processing |is
done. Therefore, a lot of information about these preccesses
can te determined during system generation and passed to the
bootload and execution phases. For example, all the
processes that will ©be executed at rur tire can te

{dentified at system generation time.
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Luniewski[11] also states that in order to simplify

initialization and still permit dynamic reconfiszuratior (9],
some minimal hardware configuration should te assured by the
initialization mecharnism. This is intuitive, since without
at least one processor and some amount of primary memory, a
computer can do no useful work. Given this minimal hardware
configuration, that is a sudbset of the 1larsest potential
hardware configuration, the initialization mechanism could
employ dyramic reconfiguration to establish the actual
hardware confisguration. In an effort to maintain simplicity,
this thesis does not attempt to implement dynamic
reconfisguration. Instead, the hardware configuraticn assumed
by the initialization mechanism is the full set of hardware
present in the system. Since fault-tolerance, which regquires
the capability to dynamically reconfigure the system, is a
long-term =20al o¢f the smart sensor pregréam, contiruine
research is tteing carried ocut to give this initializatice
mechanism that capadbility.

These assumpmticns permit linkineg arnd liccatine of thre
user’s modules with the same justification as is used far
the operatine system modules - they do not change during the
lifetime of one initialization. Thus they can de treated tre
same as the system processes, and their linkine and locatinas
car be performed during system generation. 7WYhile this
approach 1is contrary to the accepted practice of delaviag

the bindineg of logical resources (viz., memory seerezts' to
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physical resources (viz., memory locations), to enhance
system flexidility, it 1is fully Justified in this
application by the fact that the eavironment is statle.

The most important item of informatiocn that this
assumption provides is a partial definition (viz., the
address space) of each process that will be run. This allows
the Process Definition Table, shown in figure II-6, to be
created during the <ysten generation phase. The inforrmaticn
in this table includes the process name (used to address its
MDS file), its initial CPU registers, its stack base (used
for process creation), 1its scheduling priority, ard 1its
processor affinity. Processor affiaity implies that the
programmer can state which physical processor his proress
will bYe run on. This is important in the case of a system
with dissimilar processors. For example, one sirgle Dbecard
computer might be enhanced with a hardware multiplier
circuit, or a special-purpose I/0 processor. Also {included
are the initial CS and SS register values. This structure is
created from inforrmation provided by the precgrammer who
developed each process.

Aprother important function that car be done at sysStem
generation time 1s the allocation of specific segrents to
the local on-doard memory or to the global shared RAM,
0’Connell and Richardsen [18] present the design of arn
automated decision technique for memory allocation. Their

design calls for a dynamlc memory management schere. That
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is, memory allocation and deallocation is a rur time
function. The mechanism proposed in this thesis performs thre
same memory allocation tasks, but they are performed during
system generation. The global-vs—lccal decision is bdased on
the two-dby-two decision matrix skown in figure II-7, ané on
a manually- maintained memory map that keeps track of the
free and allocated portions of memory. Note that the upper
lefthand quadrant of the decision matrix in fizure I1-7
shows two possirle caoices for locatirg shared,
non-writeatle segments.

While memory can be conserved dy locating shared data in
glotal memory to avold duplication, the <choice in this
design is based upor the desire to keep as many sezmeznts as
possitle in the 1local, on-Yoard memory of the wusing
processor. Since each access to global merory reguires
exclusive use of the system bdus for the duratior of that
access, all other processors who might want to &ccecs global
memory durine this period are forced to wait until the dus
is free. For this reason, accesses to global memory should
be held to a minimum. This can be accomplished by locating
all executadle (viz., pure) code and as much data as
possible in the local RAM, and using global storage for only

those variables and data that are shared and writeadle.
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F. SUMMARY

This chapter has presented the environment ic which the
design descrited in this thesis was developed. It has shown
the hardware 1involved, ar overview of some important
operating system principles, a 1look at the software
developrent utilities used in system generaticn, ard the
assumptions made ir the thesis and their implications. With
this inforration as tackground, the thesis will preseat, in

the following chapter, the design of the initialization

mechanism develcoped for this thesis.
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IIT., THE DESIGN

A, ONBJECTIV:T

This chapter will examine the different environreants in
which the three phases of system 1initialization - <csystem
zeneratiorn, bootloadire, and run tire - take place. This
discussion will ur®old the design c¢f the iritiallization
mechanisem developed for this thesis. It will also provide
the reader some 1insight 1into the sequen-ire of the
inittalization activities and how the timirg ¢f these
activities effect the complexity of the {nitialization
process. As this discussion pregresses, more and more
references will te made to operating system functions and

services. The reader desirinz more details on the operatirg

system, per se, should refer to the thesis by vasson[?7] fecr

a more complete explenation.

B. OVERVIEW

Chapter I discussed the purpose c¢f system iritialization
and the three phases of initialization used in this thesis.
Recall that durinz the system generation phase, the bootload
medium, a core image of the Yase layer of the operating
: system, was created. The other two phases- bootload and run
time- perform the loading of this core image as well as the

rema‘nder of the operating system and the application

48




prearams from secondary storage into the computer system’s
primary memory. The iniltializatiorn mechanicm proposed in
this theslis involves two seperate loadire functions. Recall
that the bootload proeram, which runs on the bare hardware,
1s used toc load the base layer of the operatine system into
primary memory anéd start it running. This prozram |is
norrally RCM resident so that it may bYe started by
activating some hardware Reset” or "Rootload” switch.

The second loading function ic part of the distrituted
operatinz system, and is loaded into each processor during
the bootload phase along witk the ©base laver of the
operating system. This loader is used durine ruz time to
load the remainder of the operating system and the
application programs and tc prepare them to be scheduled and
run. This dual—-loader approach is cormmon {in most existine
initialization schemes, and will ©be discussed in detail
later in this chapter,

In this application, since only one processor has access
to secondary storaze system on the MDS, the rur-tire 1loader
on this oprocessor is a slightly enhanced version of the
loader process that runs on the other preccessors. These
enhancements include a “disc 1/0" routine, to allow that
loader to access the MDS disc information sent to the B6/12A
serial port, and a procedure to check the Process Lefinition

Tabdle to determine when the loadine function for this
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process is complete. For ease of discussion, this erhanced

loader will be referred to a@s the controlling loader.

C. THE SYSTEM GENERATICN SEQUENCE

Befere the loadire dbeeins, however, there 1{s some
preliminrary work to te done that will simplify the remairder
of the initializatiorn. This work 1{s done durire system
generation., As discussed in Chapter I, this thesis proposes
that actions performed at system generation tire or
subsequently at run *time are inherently <impler than that
same action performed at Yootload tire. This is due to the
more sunportive envircnment availa»le at syster gerneratior
time, and the operating system <cervicec a&available &t run
time, Compare these to the Ybare-hardware environrent at
bootload time, and the reasoning tehind this premise becomes
clearer, 1 1look at the ezvircnment in which system
g2neration takes place will previde additicnal Justification
for the proposal.

Since evetem generation takes place grprior to the
booticad and execution phases, it enjoys the suppcriive
environment provided by an existing operating syster ard ary
avalladle wutility and lidrary routines. As mentioned in
Chapter II, the program development for this thesis was
accomplished an Intel 1Inteller Microcomputer Teveloprert
System (MPS)., The desien propossd in this thesis rmakes

extensive use of the utility pregrams availabdle irn that
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envirooment to accomplish the system =zeneration tasks.
System zereration also enjoys the luxury of time. The use of
the ISIS-II operating system in the MPS cerves to reduce the
complexity of the toctload and rur time phases.

Because of the static nature of the image processing
applicatior for which this initialization scheme was

designed, the system generation vphase can make the

jssurptions rezardine the thardware cornfiguratior and the

nature of the arpplication proerame discussed in Chapter II.
These assumrptions permit extensive preliminary processine to
te done in the more comfortatle eanvironment of system
generation. This reljeves the later phases, which occur in
much less supportive envirorments, o0f the preparatory
processing that they would otherwice be required to perform.

By assuming that the hardware and software
configuratlions &re xrown at at system generation tire, that
they will remain constant from ore initializatior to the
pext, and that dynemic reconfiguration is not an issuve, all
remory allocation decisions can be made durine system

generaticr. As discussed in Crhapter II, the decisicn as to

whether a <egzment chould be placed in local or glotal memory
is based nn a3 two-bdby-two decision matrix. The prain
~ difference ‘tetween the Richardson and 0“Connellf18]
allocation schere and the scheme employed in this thesis is
that the scheme used here is manuval, rather than autorated.

This means that that memcry allocation is a one-tire systerm
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generation requirement rather than on c¢n-going run-time

function. The O0°Connell and Richardson [18) decision matrix

and memory map are mraintairned on paper, by the operson

; generating the system, rather than as data strvctures

maintained by the the system initialization mechanisr.

The simplest way to view system generation 1s as a ]
time-sequence of =events, btezinnine with prograr design and
ending with the creation of the load module, or core image

to be loaded. A detailed evamination of tkis sequence of ]

3"

events will provide a foundation for the design choices mrade

throughout the development of the initialization mechanisnm

descridbed in this thesis.

1. Prozram Decign

The operating system and initializatiorn schere

developed for this project rely on the prograrmer to decig

L3

his proerams to taxe full advantage of the multiprograrmizg
and multiprocessing capadbilities provided 1ty the thardware
and the operating <vstem. This requires that the programmer
be somewhat, thoush not intimately, farmiliar with the
operating system philosophy and the hardware corfiguration.
Given this Ydasic ¥knowledge, and the widely-accepted
technique 02 structured »nrograrring, it is relatively easy
for the programmer to design the required process structure
into his programs. Thils invelves partitioning each
application into a group of <cooperatine processes, arnd

includine in each process the necessary operatinege system
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calle to provide inter-process svnchronization, and
exoplicitly declarine shared memory segrents fcr
communication between processes,

In the development of each process, there are some
simple “grovand rules” the programmer <chould follow to
simplify memory allocation and enhance the performance of
the system, TFirst, a&ll data shared Yty procecses c<hould bde
declared to be in seements whichk are “extesrnal” to the
application vprocedure [22]. Tais implies that the variadle
is declared and defined elsewhere., Furthermore, &én abcolute
memory address must NEVER be coded intc any avpplication.
Second, all program code shculd te reentrant [22]. This
allows each iavocation of a procedure to store its variaetles
on the process stack. Thus one invocation will nct overwrite
the wvariadles wuvsed by the previouvs invocation, &< would de
the case {f the variadles wersz stored as part of the
procedure itself. The third ground-rvle is imposed to reduce
the system bhus contention problem 4discussed ir Chapter II,
and rerely requires that references tc saared, writeadle
variatles and structures be held to & minimum. This
typically irvolves a single read reference to irput data
to the process and & single write reference to output the
data (results). In particular, shared sesments should rever
te used for tempsrary or intermediate results., The fourth
rule requires that the programmer Segregate writeatle and

readable segments whenever possidle., This will allow finer

&3
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granularity in the memory allocation process. Finally, the %
programmer must declare the Gate produle as ar exterrzal

procedure in every process to Ye ren. This will regnlve all

the external references to the operatirs syster irterface, %
1 The progremrmer 1s alsc given the responsidvility of y
iznitially identifying his process to the operatine svstem. ‘é
Recall that a process can be identified by its address space
and {ts execution 9point. Therefore, the programmer must

identif

<

all the sezsments in the process address space ard
must identify which o¢f these segments will be modifiecd
f (written into) by this process. Furthermore, the pregrarmer
must 1dentify the iritial entry pecint, and any pararmeters

f passed to this entrr point. This informatlion ic¢ actually

provided tc¢ the system operator, who prerares the Process L

Defirition Tadle and makes the memorv allocation Adecisions

. based on the full set of initial process identification
information, as discussed below in the sectior on merory
allocation,

2. Compilaticn

After the proeram has been developed and written, it
must Ye compiled, The <compiler translates the high-level
language code into machine language instructions. TFor thics
application, an additional cherk 1is made at syster
generation time to insure that all program modules have teen
compiled with the same mode opticn. Recall fremr Chapter 1II

that the compiler mecde option determines the degree, or
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granularity, of the segmentation. This information must te
supplied hy the programmer, since he is the one who perforrs
the compilation.
3. Linking

The third step in the system generation cequence is
the linking together of the varicus mcdules that make up a
process. Since the o©programmer knows exactly which modules
comprise his process, ke is in a position to prre-link these
modules., Since edach process needs an interface to the
operating system, each process is also linked to the Gate
module previously descrited. This implies that each process
has declared the Gate module as an external procedure.

4, ¥Yemory Allocation

While the programrer is in the ©best position to
compile his modules and link them into individual processes,
he is rot in a position to kxnow the desree of segrent
sharing that will teke place. Neither is he in & positiorn to
know where, in the system merory, other programrers might
elect to lca? their processes. blearly tnhe memory allocation
decisions must te centralized to avoid chaos. The computer
system operator, or perhaps a chief programmer , is iz the
best position to make these decisions. This thesis will
assume that th=se decisions are made ty the operator as part
of the syster @eneration process. As mentioned ir Chavter

II, the glotal-ve-local decisione are made using a decision

matrix.




But the decisions as to the specific memory lornations to
allocate for each segment require some information from the
programmer. Specifically, the progsrammer must provide a 1list
of the segments 1ir the address space of his process, the
length of each csegment (which 1s availadle from the linker
output), and whether each segmert 1s writeable or
non-writeatle. The identification of segments must te unique
across all processes in the system to insure tkhat shared
segments can be vnambiguously distinguished. Figure III-1
shows a suggested Process Information Form which might be
used to standardize the content and forrat of this
information. The form contains one entry for each segrment in
the address space, and indicates which of the above
attridutes apply. he programmer is also &asked to identify
which other processes will share each segment. This i3 wused
only to CTOSS check for possible design errors in
interprocess comrmunication. The per-process list also
incluies the initial parameters, the process priority, and
processor affinity information that the operator needs to
build the Process Definition Tadle wused dy the bcotload
program and the run-time loader processes. This¢ information
form is provided for each application process arnd
(separately) for the operating system ¥errel for each
phbysical procecsor. The kermnel includes only one per-gprocess
data seerent: the kernel stack. Since the kernel is linked

only once for each praocessor, the operator must ~create the
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SS INFORMATION LIST

PROCESS NAME: __ PRIORITY AFFINITY: _
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CX: _ _____ DX:_______ S ______

INDEX SEGMENT NAME LENGTHE RIAD AD/WT SHARING FR0OCESSTES
1R U S T ]
2 e
S b e e
A e e ]
..-5 ———————————————————————————————————— e e e e ———
}——6———1 ———————————————————— L— ——————————— r ——————————————————

Process Information Form
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correspondine stack for each process. As discussed by Wasson
(7], the xernel stack must be allocated as a logical
extension of, and at a lower address than, the stack segment
for each proczess.

Armed with this process information list and the
allocaticn decision matrix, the operator is now prepared to
make the actual allocations of specific memory locations to
segments, Since he is, in effect, the Memory Manager process
described by O°Connell and Richardson [187, he will maintain
the System Memory Maps, for both local and glotal RAM, which
reflect the status of the system memory. As showr in fipsure
I111-2, the memory map ccntalns the tase addrecs and length
of each nared segment and the base address of the free or
unallocated areas of memory. The memory map is completed as
a sorted 1ist to aid in detecting allocetion errors made Dby
the operator. The local ard global memory in the system is
allocated separately; only chared, writeatle segments are
allocated tc global memory. A useful guideline s to
dllocate all local kernel segments at addressec below the
appliczations S0 that applications stacks can never
"overflow” into the Xernel. Recall from above that the
operator must add” a kernel stack segment for each process.
It 1s also up to the cperator to avoid “checkertoarding , or
fragmentation, the condition in which many small free areas
exist whose combined sizes are large enoush to contaln 3

segment, but none are large enough alone., This condition can
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usually bYe avoided by careful allocation, dbut it may also
involve some trial-ard-error to ottain a proper fit.
5. locating

Once all the allocations decisions have teen made,
the actual assignment of phyvcical memory locations is made
usirg the locator wutility program, LCCES. The system
operator passes the allocaetisn decisions made for each
process to LOC86 as parareters. ThesSe parameters indicate to
the locator the bace address of each segment, includine the
kernel stack, irn the process adiress space,

The operatirg 1instructiorns for 1OC86 contain the
options and parameters required to control memorr allocation
{22]. The output from the locator is the binary core image
of the process that wacs input to it. This imaze is complete
with load adldresses for the code and data in the process, as
well as the €S arnd €& register values necessary to start the
process running. The locator 1is run once for each
applicatior process, and once per CPU to 1locate the
distribtuted operatinz system kernel thet is availadle
throush the Gate to all processes.

8. File Conversion

As discussed adove, the memory manazement function
was not automated due to the lack of docurentation
concernire dinary odject files. TFor the sare reason, the
bootload program ard the run—time 1loader precesses were

desipned to reed the ASCII files output <ty the file
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conversion program, OH86. The OH86 output format is well
documented [22]. So the last step in the system generation
process is to run CFE6, once per located rprocess and CFPU
kernel, to transform the tipery object file into the ASCII
format expected ty the loadins processes. 4 skeletal example
¢f the output produced by OHS6 is contained inm Appendix A.

7. System Generation Summary

Tefore proceeding into a discussion of the ©bootloa?d
phase and the environment in which the tootload proseram
runs, it will e dereficial to pause and exarire eractly
what was accomplished during system generetion, and exactly
where the 1initialization process stands when system
generation has ‘teer <completed. This thesis views cystem
generation as a time-sequence of events that beeins durine
program dasigr, an? proceeds thrcugh comrilaticrn, lirking,
memory allocatiorn, locating, and file <conversion. At this
point, the ASCII representatior of the core irare of each
process to te loaded has been created and stored as a file
on the secondary storage (viz., floppy disc) in the MDS. The
disc alsc centains two other files: the tcotstrap preerar
and the kernel base with the run-time 1loader proncess. A
graphic representation of the disc, as it arpears at the end
of system generation time, i< shown in figure III-3Z. Note
that for each process the 1loader needs the disc address
(1.e. track number and sector numher) of the target file. In

the MDS~tased loader, this address is the actual
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filename, since the filename i¢ wuced Yty the ISIS-II
overating system disc routines ¢n the MDPS. The filenare is
one of the iteme of information availatle to the loader

process in the Process Pefinitiorn Tadle.

D. TEE BOOTLOAT FHASE

When it is desired to initialize the svstem and run the
application programs, the bootload phase beegins. In most
computer systems, the ©bootload program is 1invoked by
activatine a “reset” or “bootload” switch. This causes a
Jump to the first instruction of the bPootlecad preogram, which
is contained in FOM. After the proposed hardware
enhancements have Yeen made, and the complete operaticz
system has been developed, the ‘tootload ©program for this
system will te placed on EPRCM, and will be invoked in this
same manner., Tis section will discuss the sequence of
initialization <&ctions that take place uron invckizng this
ROM=-residert dootload prcgram.

Iike system generation, the tootload phase can te viewed
as a time~sequence of activities, beginnine when the
bootload switch is opressed, and ending wkhen the operating
system kernel i{s rurning. When the bootload switch in the
multiple microcomputer system ic¢ depressed, it causes a
kardware interrupt to occur irn all the processcrs in the
system. The Iinterrupt handler for the toottload interrupt is

the FCM-resident bootload proerem in each processor.
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1. Invekine the ROM=resident RBootloader

The bootload routine is a small, very simple progranm
that serves three basic functions. First of all, it rust
determine which CPU in the «<cystem will te the "Bootload
CPU". Th= Bootload CFU will serve as the raster or
controlling CP®7 throughout the »ootload and run~time loadirng
phases. #hile the ©bYootload proerams 1in all CPU’s are
i2entical, the RBootlerad CFJ will ex=cute some sequerces o0
instructions that the _ther processors will rot. Whern the
bootlcad vrosrams beein execution, each one will attempt to
read the same variatle in global memory. Trhic variatle will
be initialized by the EPROM opropgrams to a predetermined
value, As mentioned {in the section or memory 2llocaticeo,
access to glotal mermory requires thet & processor have
exclusive use of the system bdus. There is a duilt-in system
bus “lock’ that can te set as soon as & pracessor gets
control of the bus. This lock will te used to resolve the
conflict of multiple simultaneous access atterpts. The
processor that first gets control of the tus will tecore the
Bootload CPU. This nprocessor will then alter the value of
the global variadle. When the bus lock is turned off, and
other proressers are abdle, in turn, to access the variabdle,
they will see that the veriable has been altered, and enter

a walt loop, awaitine further instructions fror the Eootload

CPT.




"o permit the programmer to¢ specify which prhysical
processcer he wants his processes to rua on f(i.e., the
affirity of the process), there must e some way to identify
these pProcessors. Physically, the processors can te
1dentified >y scome unique serial rumber cr identificatice
rumter, This tvpe of i{dentification 1< inconvenient for the
operating system because the thysical processors can be

removed and replaced for meiatenance, testing, and for

varicus other reasons, Therefore, the {nitialization schere
reede & method of assigning logical CPT numPers to the
physical processors currently ia the syster, This can te
dore In a manrper similar to deterrining the Boctlcad CFYU. ZEy

&l CPFYJ nurter € to the

O

conveation, this scheme assigns loel

Bcotload CPU. The Bootload CPU erters its s

7]

rigl rzumder,
which iec rontaine? in 1ts TPROM, into the first erntry of a
glotal structure called the CPUSTAFIZ. The Eootloed CFT then
sets a 2lob%al varia»le called LOGICALSCEUSANUM equal tc 1,
and unlocks the locx which heas teen assoclated with that
variable, The other processors will row race  tc access

IOGICALSC®USNI'™,. ©The winner of the race will cet the lock,

enter its serial naumber into the second extry 1in th

D

D

CPJISTARIT, incremernt LOGICALSCPISNTUM3ER, and thern unlock th
lock., This oprocess will continue until all the physical
processors have teen assigned a legical CFU numder, The
Bootload CP" w:1ll know how many CPU’s there are ir the

confieuration and that all processors in the system rave
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beer assigned a logical numbder after some fixed time period

(a few milliseronds) has elapsed. In additior te the twoc CEFU
numters in the CPYSTABLE, earh procescor alco ‘ras a
"matltox”: a locatioz used for a priritive method of
interprocesser communicaticn with tae 2ootlicad CPY,

2. Accomodatins the Initial Fardware

“)

As oreviously discussed, the hardware conficuration
does not precaatly include ornline secondiary storafe, aznd the
decision was made not to write the bootlioad into FPRCM until
the development was complete, Some temporarv alterations
were made in the initialization rmrechanism to vperrit the
deviorment to preceed with this initial rardware
configuration. The vse 0f the MIS to simvlate secondary
storagze was merntioned previously. The ‘tootstrap preazrar
reads data from the serial port of one o0f the £F/124
single-board <conputers. A prosram was written for the ™IS
that reads the mexadecimal oblect files fror flopry 4isc and
outputs the hexadeciral date to the MIS serial rpert. There
i1s a <cable ronnecting thae two serial ports. The catle is
made to allow @ primitive sort of protocol tetween the twe
systems via the clear to send” and "request to send” status
linee ([22)}. This constrains the loading furtion to havirg
access to secondary storage from only one processor, rather
than from any prccessor on the statem bus. Tc simulate the
presence of an EPROM dootload proeram, the ICE-£6 in-circuit

emulator was used to load the bootload oprosrar irnto ®AM,
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Using the duel-port memcry capatility, the ICE-£€ carn load
tha *cotlcad into each processor’s local memory. The ICF-E6
was alsc used to alter the interrupt vector in each CPM so
that the preempt interrupt would transfer tc the ‘tootload

rograrm, Finally, the processor connected to the MDS was

&

N
9%

vern a slicshtly differsnt version of the tootloed yproeranm

that starts its execution dy sending e preempt irterruct to

=]
(e d

all cther procecsors, simulating tha rootload ewiten.,

%. loadine the 2co0tstrap Prozram

With these prelimiraries cut c¢f the way, the
Bootlocad cou can start the actual ‘tootstrap 1oading
2unction. This load involves the first acress to disz v the

iritialization mechanism. ©Since the ‘tostlecad ctrofram is

3
'4
O
re

*

T
w
e d

SPROM-residert, simplicity 1is a primary concern.
reascen, the trootlcad program will merely read frer a fizxed
address on disc, ani 1load the data izto a fixed area ¢f
2lo0b2l memory. For the same reason, only the Bectlead CEU

will access the dic<c. This <sim

'

lifies the tcotloed preerams

by eliminatines the need for a corvlex synchronization method
to allow the processors te <cshare the disc. The ‘toctload

program ¢n the Bootlocad CPU will merely read & sinzle disc

record, ard load that record {into a gpre-spacified aglodal
memory buffer. Note that this diczsc record is alreedr in

executable fermat (viz., not a mexadecimal file,. It will

then transfer control, with an unconditional jump, to tre

location of the first tyte in the Puffer. This will transfer
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control from the EPROM dootload prezram in the Bootloa? CPU
to the ‘tootstrap program just read in from disc. Fiesure
III-¢ shows the corntents ¢f the system werory after the
bootload prosram has been run.

4, Txecuting the Booltstrapy Proeranm

The bleck of data jus*t read 1in cortains the
tootstrap precaram developed durire system zeneration., Recall
thet this gprosgram 1is designed to load the tace laver
(kernel) of the operatine system from diss izto primary

memory. Since each praocessor’s lecal memery will cortair

parts of this kernel, each processor will neei to execute
the Ypgotstrap program to lcad its xernel. or simrplicity,
@all oprocessors will share the <arme tontstrap rroeram ccie,
that will be located iz p213dal ®iM, The TFootleoad CPT (at
this point -executing the Yoctstrap pregram) will d¢ tre
actual disc read for all processors., This i1s consicsternt with

the rathod used tc azcomodatz the the initial thardware

configrration as discussed ahove. Tha Footload CT7 wil

[
—
(9]
[oV
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the rexadeciral file containiane the Tase layer of the kernel
into a global remory buffer, leavirng it in the hexadecimal
formet. The Baotload CPYU, since it i< already running, will
then be the first proc=ssor to load the Xernel intc 1ts
local remorv. The tontstrap pregran includes functiorns te
reai the Thexadecimal otject file (the kernel) fror the

glotal TFAM ‘tuffer, convert the <data te its tirary

(executatle) reprecentation, arnd load it at the addresces

92}
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specified in the hexadecimal <file. Recall that trhis load
addrecss for each segrment in the kernel is made up of the
segment base address in the segrent base address record and
the loasd address offset ccentained in the data record itself.

All other processors are still executine the EPROM
tcotload proeram, waiting to be sienalled by the Footlecad
CPY via their "maildoxes” . The Eootload CPY now siznals each
CPU {in turn to load its kernel, zrd then weits for a signal
that the CP7J hag done so. Note that before signallina, tne
Bootload CPU insures that the target P77 ¢ kxernel i< in  the
global buffer- either read in from disc or still precsent
from the loadineg of & previons CPY7. When sigrnaled Y»y the
Bootload CPY, each CPU transfers (jumps) from the ETPROM
bootstrap program to the global RAM Yootstrap oprezram., It
then executes the routine to read the file (the kernel) from
the huffer, ccnvert the data back to its ‘tinary
representation, and load it into the addresses cpecified in
the ASCII file. Since the identity of the xerrnel hexadecimal
file 1s well defined, and since the number of CFY’s is krowrn
{viz., availabdle frem the CPY  Tatle), this ‘tootload
procedure is relatively sSimple. Recall that sipplicity is &
primary =o0al during the bootload phase since the envirorment
is only the bare hardware. As each processor corpletes its
bootleocading task, 1t will perform an uncorditicnal jurp to
the first 1location in its kxernel (now in executeble form).

The Bootload CPU will Jjump to the kernel after all cther
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CPU“s have finished their Ddootloading teck ard sipralled

this fact to the Bootload CPU.

This jump will simulate & preempt interrupt 1in the
Inner Traffir Controller irterrupt handlar [7]. The jump is
to a special entry point in the 1interrupt héandler routine
that is used only for initialization. This entry poirt saves
the processor register values, which include the lozical and
physical CPU numbers, that must be saved for léter use by
the Inner Traffic Ccntroller Scheduler. The entry inte the
Irner Traffic Controller marks the end of the tootlcad phase
and the transition into the rurz tire phase. At this point,
all processors are esxecutinz in the kernel. The ‘tootstrap
program is no lornger reeded, and will te overwritten. The
system merory at the end of the Dbootstrap sequence is

configured a¢ showa in figure III-S.

. ¥, QUN TIME
i The loadinz performed at run time is ccnceptually quite
similar to thes Yootloadine discussed 1in the previous

section., One Qdiffererce betw

3]
32
e}

the two phases is that the
run time loading involves all procescses that are to te run.
But the main difference is that the "Bootload” function is
done tv run time loader processes that ruz on the virtual
processcr provided by the kernel. This implies thet the

instruction set now includes the overating system primitives

provided by the kernel (e.g. ITC_ADVANCF, ITC_AVWAIT, ard
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Create_Process). This provides a much more supportive
environment than the bare hardware of the bootload phase.

1. Invokineg the loader Processes

To vnderstard exactly what happens when tke bootload
program jumps to the preempt handler in the kerrel, it will
te beneficial to review just what is in the kernel base, andéd
how the contents of the kernel g0 adout performines the
rerainder of the loadineg activities.

Twere are actually two processes in the kernel base.
The first 15 the idle virtual processor. RBecall that this
"processor’ is invoked when there is no other vuseful work
avallable to bYe rum on a physical processor. The other
kernel process is the rur time loader process~ just a
modified version of the O0°Connell and Richardson remory
marazer process [18]. All kernel cegrepts are included in
the address space of bBoth these kernel processes.

The Virtual Processor Map {(VPM) in the Irrer Traffic
Controller was initialized during system desien to reflect
that the 1dle virtual processor is running  or each CPU,
The memory manager {(i.e. loader) is initialized in the ready
state and with 2 high priority. All other virtual processors
are in the idle state.

The Traffic Controller’s Active Process Tabtle (APT)

is initialized with NO applications processes. All virtual
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processors visible to the Traffizc Controller are chown to te
runninz an idle prccess.

Because of this initial <state created durirne system
generation, the jump to the Inner Traffic Controller at the
end of the tontload phace appears to the kernel as a preemrpt
interrupt of the idle virtual processor. This preempt <auses
the righer prinrity loader process to de scheduleé &and run
on each dhysical prccesscer.

These loader precesses all have the Process
Cefinition Tanle in their address space &as an exterral data

seement shared ty all lpeder processes. This tatle is the

primary data tase used to drive the remainder of the loaiirne
function.

2. Lcading the Application Processes

Now that the operatine system kernel i< runnine on

each physiral processor, it <can be used to lgad the

¢ application processes from disc. Since each application
process exists as a hexadecimal odject file oa the dise, and

cs{nce the 1lcader processes have a complete descripticn of

each application process in their address spaces (viz., the

Process TDefinition Tadble), the remainder of the lecading

tasks are relatively straiehtforward. This will invelve

readirg each application process frem ths dise, placine tt, !

in execuytadle (i.e. dbinary), form at the appropriate

location in the system memory, ldentifying the process to




the Y¥ernel, and finally, causing the kerrnel to schedule angd
execute the application pro-esses,

The Bootlnad CPT still serves as the svstem mester, and
still makes all disc 1/0 requests. Since their register
values, includinz their serial rumders and 1lngical CFU
nunters, were passed to them at the teginnins of run time,
each processer can determirne whether or rnot it is the
Bootlead CP7 (i,e., 1c 1ts logical CPY nurter €2}, I® 1t is
not, the loader process will dc an ITC_AWAIT, wuntil it is
sizralled te proceed (via an ITC_ADVANCE) by the Beotlead
CPU. The seguvence of operations performed &t ryn time call
for the Eootlcad CPU to read the first non-kerpel
aexadecimal odject file from the disc and to store it in the
2lotal FAM bduffer. The Pootlcad CPU then checks the Affinity
In the Process Definition Table tc determine which physircal
processor the process is intended to run on. It will then <o
an ITC_ATVANCE on the appropriate eventcount for the loader
process ir that CPU. Note that there is the special case ¢#
aprlication processes teing loaded on the Bootlcad CPU. Ir
this case, the sigralling will be slizghtly different. DPul
this will require only a minor addition to the loader
proagram,

™e desienated prccessor’s loader process will load
and convert the heradecimal otject file as descrided in the
previous section. In addition, it will -extract from the

hexadecimal otject £1le the CS and IP register values, It
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will enter these values intn this loader procecs’s Procecs
Parareter Elock, alone with the SS resister value fror the
Process Pefinition Tadle, The loader process ther calls the
kernel Traffic Controller procedure Create_Process ,
passing the address of the Process Parameter Elock as arn
argument. Create_Process makes the necessary entries in the
Active Process Table to descride the Jjust~loaded nprocess,
and initializes the kernel stack for this prncess.
Create _Process then returns into the 1loader —process from
which it wes <called. The loader process will, ir turn,
notify the Bootload CPU that it has finished, and the
Bootload CPM will read iz the hexadecimal odlect file for
another prccess.,

2. Initiatine Application Process Execution

™his s=squence of eveats is repeated until the loader
process on the 3ootload CPY finds a nvll entry in thre
Process Tefinition Table, which siegnifies that all processes
have theen 1lnaded and created. This reans that all system
initialization functions—- system generation, tootliadirne,
and run-tire lcadirg- ere completed, ard all application
prncesces are created, 1naded on their respective

processors, and in the ready state. Th2 only thire required

taf

now is for the Bootload CPJ to <call the ITC_SET P»

IMET
procedure for each virtual processor known to the Traffic

Controller and then do an ITC_AWAIT. This will cause txe

78




normal scheduline functions to run the highect opriority

process that is ready to be run or each processor.

F, STMMARY

In this chapter, the entire sequence o0f events required
for initialization of a multiple microcomputer system have
been examined. Each of the initialization phases - system
generation, hootlecading, and run time - and the envirorments

¥yele was

[

in which they occur, have been analyzed. Thie ane
intended to show the reader how initialization car, indeed,
be sirplified d»y & careful sequerncirg of initialization

activities.

77




IV. SU¥MARY AND CONCLUSIONS

A, STUMMARY

The =20al of this thesis has teen to develop & system
intttalizationr mecharism fcr the Intel ECEE-Dbased rultiple
microcomputer cystem to e wuced by the Solid Etate
latoratory at the Naval Posteraduate School for "srart
sensor” rssearch., A secondary soal, frem the cutset, has
bteen to presemt & system initielization decign philosophy
that would help fil1 a wvoid in current computer science
literature. This design philosophy asserts that the 1issues
of syster gzeneration and tootstrap 10ading deserve a level
of consideration equal to, and concurrent with, operatirg
system 1issues. The Dbasic prerise 0f the tresis is that
sirplification leeds tc a mere versatile and rodust <Zeslian
and, subsequently, to & system ipitialization mechanism that
is easily urderstocd and readily adap*table te a variety of
hardware and operatirne svetem configurations.

The sirplification in this desigen apprcach 1is achieved
by two means. The first is a core-image ériven lcader. Tais
technique involves creating a copy of the base lever of the
operatire system as 1t should appear in prirary mrerory

hen

immediately prior to execution. This core image ie

(54

stored on some secondary storage medium. 'When {1t is desired

7&




to initialize the system, this core image is rmerely 1lcaded

into primary memoryv and control 1is passed to the first
instruction.

The other, and protatly wmnre meanineful, means cf
simplification is to carefully seguence the reguired
initialization activities snuch tzat each is perfermed in the
most supportive envirorment availatle. This transfers
functional —complexity to a phase ¢f initlalizaticr that

enjovs the most operatings system and wutility Lrogram

(20

support, and removes possidble complexity fror the bars
hardware environment of the bootload program. Since the rost
supportive environment in this application is &vailatrle =&t
system gereraticn time, the go0al was to accemplish as rarny

initiallization activities &s possible during this thsa

wn

€.

With the assumptions (based on the applicaticn fer which the

system was designed) made at svstem generatior time, this

ke |
(%4
Jote
<
D

thesis was abdle to fully wexploit this most <supge
eavironmeat. In so doing, the zeneration of tre rorrtvlete
core imaee and all mepory allocatioun were &ccerplished
durireg system gereratior. As the core image of each grocsss
is created, the identity of the process (viz., 1its addreess
space and execution point) were encoded into the iraege. Thus
every process in the syster covld te completely
characterized with {nforrmation contained in its core irace,.
This capability creates a compilation—-independerce that is

important to a generel purpose initielizetion mecherism,
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The system initialization scheme desigred for this
thesis mak¥es extencsive wuse of the operatirg svstem kernel
primitives avaiable at rumn tirs. In rarticular, the
ITC_ADVANCE and ITC_AWAIT primitives are used for
interprocess cormunication durine the leoadire of the
application processes, and the Create_ Process furction ic

used to identify the applicaticn processes to the kernel.

B. FOLLOW-ON WORK

This thesis has scratched the surface o0f an extremely
interestines and challenegling research area. Eut iz developinz
the initializatior mechanism discussed here, it trousht to
light many follow-cn research ideas, Natuyrally, ths first
follow=on work should ~oncentrate on comrletine the
implementation of the design presented in this thesie, The

design and implementaticn should then %te extended to

wn
b
o
[
D
+ 3
>
e
n

automate as maay of the manual functions &s Dpos
should include complete automation of the linxins ezd
locatineg oprocesses, possible eliminatiorn o¢? the ?ile
conversicn program, and automated memory &llcceticn a&s
discussed dy O’Connell arnd Richardsen [18]. This woulld
provide oprogrammatic creatior of the Frocess Defirition
Table, 1initial meTory map., and the other syster
initialization data structures. This effert will require

additional decumentation from the Intel Corporation on the

developrent tools aré file formats discussed in Chagpter II,

8¢
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Recall that this thesis made several assumpticne to
simplify and expedite the development process, Near~-term
research efforts mrmight attempt to eliminate scre c¢f these
assumptions, particularlv those atonut the static nature of
the run-time eaviroament. This weculd result in a more
generally applicable mechanism that would *e less dependent
on & pricri knowledee adbout the system confiruvratior. In
order to achieve this generazlity, it will tYe recessary to
automate most of the functions that are done marvally ic
this thesis, particularly the memory allocatien. The desiear
0f this initializaticn mneckanism 4{¢ compatidble with the
memory allocation schemre designed by 0’Connell ard
Richardson, and should accept suck a run~-time remorly
allocatior function without majsr alterations.

0f imrediate <concern to the smart sernscrT research
project should be the integration of the hard disc suteystenm
into the hardware confisuration. The availatility of on-lize
secondarv storége would permit further <implificaticn 0f the

inttialization mechanism, and remove the need for th

4]

"controlling loader”.

The most challensing research area, howaver, 1is dyrnaric
reconfigzuration and its subcseinuent benefit- fault tclerance.
These are state-of-the-art 1{ssues that are alsc loae terr
g0als 0f the smart senscr pregram. They are alsc airost

t

mandatory for a viadle, operational <mar
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C. CONCLUSIONS

The worx done in this the<is has c<howr the feacitility
of developine a simple, versatile system 1initializatiorn
mechanism tac<ed on a core image approach and the cereful

sequencine of initialization activities. The desi

2)
T3
e

reposed

la-)
vy
Yode
]

nt

)

irn this thesis has nct reen fully tested, dut suffic
functiorns were Iimplemented to support the basic concepts
propesed, The exrperience with tha system thus far has <shown
that the concepts are not difficult to put inte practice,
and that they d4: result in a sirple, easy to wurnderstand
mechanism for loading and startirg a trocess cr a tare
machine. The desiegn proposals d=veloped in this thesis
should precve beneficial to future initializaticn developrent
efforts, even where the haeardware and operating syster are
different.

The thasis has alsc confirmed the value of an ojpereting
system with explicit seerents and processes, andi has shown
how such an opercting system structure can be exploited to
sienificantly simplify the initialization mechénism. As this
structure for nrmicrccomruter operating systewrs heccemes rmere
widely irplemented, the methods used in this thesis can te

widely applied tc simplify the entire system iritialization

process.
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APPENPIX A, UTILITY TRCGRAM OQUTPUT

A. OBRJECTIVES

This appendix is provided to further acgquéairt the rezder
with the Intel scftware development utility preerams used in
this thesis. Zach proesram and its pertinent pararmeters an?d
options will te explained, and a samplz output will e
provided., While these programs are Intel crroducts, aré ars
designed specifically for the Intellec MIT with the ISICS-II
operating system, they are rTeyresentative o¢f opreerars
provided with otkher comrputer systems. The sample outputs 3%
the end of this appendix are dased ¢n a very sirple PL/¥-2F
program, written only to deronstrate the develovrant utility
programs. The scurce code for the sample zroerem is shown in

figure A-1.

txf

. TEF PI/mM-25 COMPILER

s mentioned in Chapter II, the FL/M-£6 Cempil

(D
-3

translates the PI/M-86 source statements into £22€ macnine
irstructions. The MOLXT control in the comrarnd 1ine
determinres the degree of segrentaticn., Ir the sarple proeram
compilation in fievre A-2, the CODZ control was uced t2
cause the compiler to 1list the £266 rachine code

instructione gsenerated for each PI/M-8€ instructicn. Nots




e
ty
m

that the lenzths of all the <egments oproduced ty

compiler are listed at the end of the output.

t<3

c. 7T LIINKSE PROGRAM

-

(=]

W

he 1lin

ear program, as discussed ico Chapter II, corbtines

the variouvs program modules that make uy & gprecess and |
resolves any external references, At the sare tire, i ;
ad justs the relative addresses in the mciule s¢ tnat they

are all relative to the teginning of thke outrut module. The

w
<t
O
‘4

sample LINKZE output listine in fisure A-2 shows the 11
segrents produced fcr the sample proegram bty the Intel

linker.

D. TEX 10C&S PTOGRAM
The locator prosram 1s used to assign phvsical memory f

i

addresses to the relative addresses in tre 1linker output
module., I0C26 provides several diagnostic and cutput ferrmat

controls [2¢]. Diagrostic information 1includes & symtol

table and a complete memory may, showing tne results of the
locator function., This information is sent to & oprintadls
disc file unless otherwise specified. Cutput mcdule contrels
are used to control the content of the ocutput module, the
order of the segments in the module, and the eassignrert of

physical memory 1locations to the sezmerts. Tre contrgls cf

primary concern here are the ADDREISSES and SIGMENTS




controls. As seen in figure A-4, these <controle ccsigr @
base address to each sSegment in the process.

The other control of interest durine svstem
initialization is the SEGSIZZ cortrol. It is used to specify
the size ¢f one oI more segrments ir the output mndule, This
control is used durine system generation to build the kernel
stack frare discussed in Chapter III. i

The sample 10CE6 output in figure f£-¢ irncludes the
procaess’s symbol tadble and memory map. ZFor illustrative
purposes, the SEGSIZE control was used to alfd 2¢Y “vies t¢

the size o0f the stack Seement.

=y

. TEE OHS6 PROGRAM

The #inal utility program used durine system egezeration
is the file conversion prograr, OHEZE, PRecall trhat thi
proeram translates the binary object file (for which very
little docurentation is availadle) into an ASCII rexadecimal
otject file (which 1is very well documentad). The samule
output from OEEE {s shown in fisure A-5. The ‘tlank spaces
and lipe numters were added tc impreve reada»ility, arnid do
not occur in the actuval outgput file,
Fach hexadecimal file produced by OFE6 i{s made wup of

four different record types. These record types are

explained below.

JFOUTE SV
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1. Record Type € is the Data Record., These reccrds
contain the actual program code and data that meke up each
process.

2. Record Type €1 is the End-of-File Recori.

2. Record Type 22 is the Extended Address 2ecord. This
record specifies the segment tase address for the type @€¢
records that immediately follow it. For example, the type ¢2
record in line 11 of figure A-5 contains the <cegment ‘tase
address (@1¢28) for the type €2 records in lines 12 througk
18.

4, Record Type €3 1is the Start Address Pecord. It
specifies the Code Segment and Instruction Pointer resicter
values for the first instruction in the Code Segrent. Ir the
example, the CS register value is €120E, and the IP register
value is €@ZEF. The locatioans from the address specified in
10Ce6 (1¢@2F) to the address specified in the Start Address
Record (1¢2£K) are wuced ty the «compiler to store the
addresses 0f external data segrents, ard the DS and SP
register values (see lines @1 through ¢4).

Tach of the records in the hexadeciral object file
consists of several fields. These fields, and their effect
on the loadine function is explained below.

1. The Record Marx Field is used as a record deliriter.

OH86 uses ar ASCII colon (€3AH) to siegnify the teginnine of

each record.




2. The Record Leneth Field contains two ASCII digits
that specify the lereth, 1in Dbdytes, of the data or
information contaired in the record.

3. The load Address Fisld contairs the address offset
from the segment tase address (in the type ¢2 record) for
the first data byte in the reccrd, Note that ozly tyre o€
records have 1load addresses other than 2¢2¢. RPecall frcm
Chapter II that there 1is 1o ‘tourdary check wrede wke:n
addressing into & segment. The exact lnad addéress for a

particular data tyte can te calculated as follews:

EF¥F, ADDR. = BASE ADLRESS + [(DRL2 + DRI) MOTULC £&X)

Wwhere DRIA is the Data Record Load Address, aréd LTI is tre
byte index withir the Data Record.

4, The Pecord Type TFTield specifies the type c¢f the
record, as descrited above,

5. The Data TField <contains the actual data <o e
converted to birary and loaded into primary memory. This is
a variadle length field that may te from 2 to 1ZH bytes
long.

6. The Checksum Field is used for error detecticn in the
loading and translating process. It containe the twos
complement of the €-Yit sum of the dytes that result fror

converting the ASCII bdytes tack into bdinary.




SUMMARY

T™his appendix was intended to acqueint the user with
more detalls concerrinz the software developrent utility
programs used to develop the system gereration mechanism
descrited in this thesis. It has provided & very simple
P1/M-86 program and the output from each of the development
utilities. The reader desiring additional infermation atcut
these programs should refer to the M{S-2£ Software
Development Ttilities Operatirg Instructions fecr ISIS~-II

Users [2¢2].
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SOURCE LISTING

/% %6 2 e R 3 e e o 2k ok Ao e e o ek e o e e e ARk e s ok otk ok e ok e e sk e e e e sk ke e e de sk Rk f

/% =/
/* Sample Proeram to deronstrate the software %/
/* development utility programs vsed during */
/¥ system generation. This program simply Vs
/% increments a global array element 2ine x/
/% times ard then prints the result cn thre e/
/% terminal screen, ®/
/* *®/

o's . 4 wte ate by sig str als sla she 2ts Sis s aly wle als wle giv $2 2 STE wlrale als ale als Sz 872 abe vu 40 ot 4ts sly wte als tTs aie ikt a'y ale a's a'e sfe sle 1o 4% b2 o
/*v******&m**%m%mmvm*&mm*m*mém+$mmm¢*w$$$$mm¥»mm#mmmw**bm-

s/

CCUNTER1: DO;

DECLARE I BYTE, /*loop index*/
ARRAY (?) BITE EXTERNAL, /¥external array*/
PROMPT(*) EYTZ INITIAL(’VALUZ IS: 7),

STATUSPORT LITERALLY “@ISH",

DATAPORT IITERALLY ‘grLAE”’,

YMITRDY LITERALLY “¢21E”;
/%3 s A e e e e sk oo ek ol oo e e et sk s ofe sl ek e ol Be e e s ek de ok Bk ek ok
* s/
/% OUTCEAR is a procedure which tests the %/
/* status ¢f the serial I/0 port that is L
/* connected to the terminal. If the port */
/* {s ready , an ASCII character is cutput w/
/* to the CRT screzn. *®/
/% */

/******************$**$***$$******$$$****$$$*****$***$*/

OUTCHAR: PROCEDURE (CHAR);
DECIARE CEAR RYTE;
DO WEILE (INPUT(STATUSPORT) ANL XMITELY) = ¢
END; /* wait until ready to transmit®/
OUTPUT(DATAFORT) = CEAR AND @7FE;
END; /* of QUTCHAR declaration =/

APRAV(2) = 25 /* initialize sum %/

PL/M=€6 Source Listing

Figure A-1

g9




o

ol =¢ TO 9;
/* {increment the sum */

END; /* of DO loop */

DO I = @ T0 LAST(PROMPT);

/¥ print the hneader’ #/
CALL OUTCEAR(PRCMPTI(I)V);
END; /% of print loop */
CALL OUTCHAR(ARRAY(2)); /* print the sum */

END; /* COUNTER1 program */

Pl /M-56 Source Listing

Figure &-1 (cont’d)
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PLM-26 COMPILER COUNTERL

ISIS-I11 PL/™-86 V1.2 COMPILATION OF MODIE COUNTZIP1

CRJFCT MODULR PLACET IN :F1:CNTR1.0RJ

COMPITER INTOKED BY: PLME6 :F1:CNTR1.SAC CODE 1A3GE
DATE(1 JUNT &¢)

/% %ok ek ot e s o oot o st s e il e e e sk o oot destate oo e e g e e e R g gt S e
/% )
/¥ Sample Program to demounstrate the software */
/% development utility programs used durirnz %/
/¥ system generatien, This prosram simply W/
* increments a glotal array element nine x/
* times and then prints the result on the #/
/% terminal screen. */
/* ¥/

e oo e whe ola afs wis ale wie Wa alaale ale t. whs 2ty oly ahs W0 ale wla ate gl Mo ot bo alo ol s e 4o Wle A2 wa e e o, e ule s oo wls ae wie wa wie aly sbe Me b
/ NIRRT N Me R K sl szt Ke sl e e oo e e s s e e N e s Nt e s e sie e v et sle st sk e e A e e st se v e e e Baske /

1 COUNTER1: Lo;

2 1 DECLARE I BYTE, /% loon irdex */
ARRAY(2)  BYTE EXTZRNAL,
PROMPT(*) BIT® INITIAL(VALTIZ I1S: 7},

STATUSPORT TITERALLY ‘eTe&E”,
DATAPORT LITERALLY “2Dad°,
XMITRIY LITERALLY “@¢i1E”";

% AR s o o e iz e ek e Slesie a3 o e el ok e ofe e 4 e e e sl e ek e e B sl ok e e e e sk T A R ek g

/a;: W /
/* QUTCHAR is a procedure which tests the */
/* status of the serial I/0 port that is */
/% connected to the terminal. If the port */
/* is "ready , an ASCII character is output */
/% to the CRT screen. w/
/* =/

sk de e oot el s ke sk e R o R et ok et e e e e e e sl st el R oR A AR

3 1 OUTCHAR: PROCEZDURE (CXEAR);
y STATEMENT # 3
PL/M~E6 Compiler Listing
Figure 4-2
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[A I g ]

OUTCHAR PROC NEAX
ge?2 55 PUSE BD
g@74 8BEC MOV R®,SP
DECLARE CHAR 3BYTZ;
DO WEILE (INPUT(STATTISPORTY ANL YMITRIT) = ¢
END;
; STATTMENT = 5
@1:
g@7E E4lE IN Pr8E
ge?e  F6Ce01 TIgT AL,1H
¢e¢7E 74¢3 JZ $+5E
ge?D EogZ20 Jmp a2

; STATEMENT # 6

¢c8g ROr2FT JMP Q1
c2:
OUTPUT(DATAPORT, = CHAPR AND @7FE;

7 STATIVENT & 7
gR8Z BA4E24 MOV AL,[RP].CFA4R
CCRE ECRETF AND AL,7FE
¢¢89 EETA ouT ¢TAE

END;

i STATEZMINT # &
PCRR  SD P0P kP
gesr  £2¢2290 RET 2K

CUTCHAR ENDP
|
ARRAY(@) = @3 /* initialize sum */

; STATEMENT # 9
gegs  FA CLI
g0Qo 25_¥160400 MOV SS,CS:GRSTACKSFRAME
goZT RCEZ60QC MOV SP,GRSTACXSOFFSET
¢211 8BEC ~OY xP,SP
2013 R2IRF1EQELD MOV DS,CS:CFRTATASFRAME
¢@18 TFB STI
219 2EC41ECeee 1ES BX,CS :GARRAY
g21T 26C6¢7¢¢C “ov ES:ARRAV[3YY ,¢F

DO I = ¢ TO 95
i STATEMENT = 17
gz22 (6060¢02cE MOV 1,28
@3:
@227 8C3ITIVLLR9 CMP 1,9E
ge2C 763 JRE $+5H
gg¢2r E911¢¢ JMP Q4
PL/M-€6 Corpiler Listing

Figure A-2 (cont’
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11 2 ARRAY(@) = ARRAV(2) + 1;
/* increment sum */

; STATEMENT # 11
¢e31 2ECe1%peee L3S BY,CS:BARRAY
ge3s 26FEe? ING IS :AREAY [BX]

12 2 END; /% DO LOOP %/

; STATEMENT # 12
ee39 FEgEQECe INC I
gezxn 74232 JZ $+81
¢e¢3r EQISFF JMP @3

(4:
13 1 LO I = @ TO LAST(PROMPT);
/% print the "header =/
; STATEMENT # 13
ge42 Cer6000ree MOYT I,eH
@5:
@247 SZRTICCOLRA CMP 1,@AF
ge4ac 76e3 JBZ $+587
PC4r E915¢2 IMP @6
14 2 CALL CUTCEAR(PROMPT(I));

; STATIMENT = 14
¢€51 RAl1Fgeee MOV E1,I
¢o55 B72C MOV BE,2H *
ges? FFE7721 FTUSFE PRCMPT[(EX]; 1
¢esA EEB1€2¢ CALL OUTCHAE

15 2 END;

; STATSMENT = 1%
gesD FLIeeeece INC I
0061 7423 J7 $+5K
¢@62 EQE1FF Jvp @S

G6:
16 1 CAILL CUTCHAR(ARRAY(2));
/* prirt the sum %/

; STATEMENT # 13
CC2BE 2KC41=2CeR 138 BY,CS:PAPRAY
¢@63 26FF27 PUSE ES:ARRAT [BX]
¢CZEF EEg2¢g CALL QUTCEAR

17 1 END; /% COUNTZIR1 *=/

; STATEVENT & 17
ge71 FR STI
ge72 Fa ELT

PL/M-26 Compiler Licsting

Figure 4-2 (coat’d)

93




MODULE INFORMATION:
CODE AREA SIZE

Q@98FH 143D

CONSTANT AREA SIZE = ¢C0OF 2D
VARIABLE AREA SIZE = ¢¢CCH 12D
MAXIMOM STACK SIZZ = QC€6F 6D

52 LINES READ
¢ PROGRAM ERROPR(S)

END OF PL/M-86 COMPILATION

FL/M-86 Compiler Listing

Figure A-2 (cont’d)




LINK I

wn
v3

ING

n
[¢]]
t

ISIS-II MCS--€6 LINKER, V1,1, INVCKEZD RBY:
LINEKE6 :F1:CNTR1.0EF’, :F1:ARRAY.OFZ TO :F1:CNTR1.INY
LINK MAT FOR :F1:CNTPL1.INK(COUNTFRL)

LOGICAL SEGMENTS INCILUDZT:

LENGTH ADDIESS SEGMENT CLASS
PEEFE —=—e——— COUNTZR1_CODX® CCDE
CCECE  —w==—- COUNTERY _TATA TATA
PPPER ——~——~ STACK STACK
PCROH =———e- MEMORY MEMORY
geCLr —m=——-— ARRAYDZIC_CODX: CCILx
22228 —-———- ARRAYDSC _DATA CATA

INPUT MODULES INCLUDED:
¢tF1:CNTR1.0BJ(COUNTEER1)
:F1:ARPAY.0RJ (ARRAYDRC)

LINK86 Listine

Figure A-2
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ISIS-I1I MCS~86 LOCATER, V1.1 INVOKED BY:

10C86 :F1:CNTRL1.INK TO :F1:CNTR1.RUN ADDRESSES(SEGMENTSS
(COUNTER1 CODE(1¢6@E),COUNTER1 DATA(Z@Q@F) STACK(30¢¢R),S
ARRAYDEC_DATA(3¢€€CE),ARRAYDEC CODE(Slf@@F) &
MEMORY(31120H)))&

SEGSIZE(STACK (+2¢H)) RS(@ TO @FFFH)

SYMBOL TABLE OF MODULE COUNTER1
READ FROM FILZ :F1:CNTRI.INK

WRITTEN TO FILE :F1:CNTR1.RUN

BASE OFFSET TYPE SYMBOL EASE OFFSET TYPE SYMEOL
3000F ©000H PUB ARRAY

ARRAYDEC: SYMBOLS AND LINES 3

3110H @e¢e¢R SYM MEMORY 30ZCE @OQOE SYM ARRAY
3100F @2eer 1LIN 3

MEMORY MAP OF MOLULE COUNTER1
READ FROM FILE :F1:CNTR1.INK
WRITTEN TO FILE :F1:CNTR1.RUN

MODULE START ADDRESS PARAGRAPE = Q12@E OFFSET = 2O@8E
SEGMENT MAP

START STOP LENGTE ALIGN NAME CLASS

P100¢H 2108EH @¢8FH L COUNTER1_CODE CODE

€2¢eCE ¢2¢CEE ZOLCH W COUNTER1_DATA LATA i
Q3020  @302SH 2226H w STACK STACK !
3000¢E  3eee1lN eee2F W ARRATDEC_DATA DATA i
31CE€LCE 31¢eeR PCCeR W ARRAYDEC_COLE CODE }
311¢¢H  311e9¢H 2@o0oH W MEMORY MEMORY )

L0C86 Listing
Figure A-4 ;
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